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Abstract—In this paper, we investigate stability region of hybrid up-
link non-orthogonal multiple access (NOMA) in conjunction with non-
cooperative game, where two users independently send packets with trans-
mit power control according to fading channel gain to the same radio
resource so that their packets are received at a base station (BS) with
one of two target receive powers (TRPs). The BS then tries to decode the
packets with successive interference cancellation (SIC) technique in power
domain. We consider a symmetric non-cooperative game where the users (or
players) send packets with one of two TRPs or no transmission. We examine
the convexity of stability region at the mixed-strategy Nash equilibrium
(NE) of the game, where no one’s queue grows to infinity. Furthermore, we
investigate how the stability region changes depending on the parameters
of users’ payoff.

Index Terms—Hybrid uplink NOMA, stability region, random access,
truncated channel inversion, Nash equilibrium.

I. INTRODUCTION

Along with explosive research attention on downlink power-domain
non-orthogonal multiple access (NOMA) [1], uplink NOMA has started
to draw attention for the fifth generation (5G) new radio (NR). Two
types of NOMA can be considered for uplink: code-domain [2], [3]
and power-domain [4]–[13]. The former allocates a unique spreading
code to each user, while the latter allows multiple users to send signals
with superposition coding over the same time/frequency resource block.
Additionally, the base station (BS) in power-domain NOMA tries to
decode the superimposed signals from multiple users with successive
interference cancellation (SIC) technique in a descending order of the
received power. To facilitate SIC decoding at the BS, the users can
control their transmit power such that the receive power of their packets
at the BS can be one of the predefined levels, which is called target
receive power (TRP) in [11]–[13]. The BS can try to decode the packet
with the highest TRP.

As a distributed scheduling by random access, a hybrid uplink
NOMA has been proposed in [13]. In the system, its bandwidth is
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divided into M orthogonal radio resource blocks (RRBs). Each RRB
is allocated to two users so that they can share it with uplink NOMA
random access. Accordingly, the hybrid uplink NOMA supports a total
of 2 M users with M RRBs, while conventional orthogonal multiple
access (OMA) can do M users. Since the hybrid uplink NOMA can
achieve a statistical multiplexing based on random access, it is different
from uplink NOMA random access [12], where a large number of users
(re)transmit their (short) packet to an RRB at will.

As a prior work, using evolutionary game approach, it was shown
in [13] how the users (or players) determine their strategy of choosing
a TRP to maximize their payoff under the assumption that the users
have always packets to send in their queues. However, the assumption
on the saturated users may not be valid in practice.

In contrast, this paper investigates the stability region of the hybrid
uplink NOMA system [13], by assuming that the users have a queue of
unlimited length to store arriving packets. It can be said that any mean
rate inside the stability region guarantees that the users’ queue grows
finite. In other words, if the mean rate of packet arrivals of any user
lies outside the stability region, i.e., instability region, the user’s queue
grows infinite such that the packets in the queue experience infinite
queueing delay.

The main contribution of this paper is to show how the stability
region of hybrid uplink NOMA system can change when the users play a
non-cooperative game of random access. More precisely, incorporating
the game theory into the stability region enables the users to have
incentive and/or disincentive of taking an action, which affects the shape
of the stability region of their queues. Although the stability regions
of some downlink and uplink NOMA systems have been investigated
in [1] and [9], respectively, game theoretic perspective has not been
incorporated with stability region. As a result, we show that the hybrid
uplink NOMA system can achieve the stability region of the ideal time
division multiple access (TDMA) system when the users have a high
reward of transmission success and/or low transmission cost.

II. SYSTEM MODEL

A. Hybrid Uplink NOMA

Suppose a time-division duplex (TDD) system, whose time axis is
divided into slots of a constant length. A slot is further divided into two
parts, i.e., downlink and uplink. A BS serves a total of 2 M users and
assigns two users, say user 1 and 2, to one RRB for them to share in
a slot [13]. We assume that the BS broadcasts a pilot signal over the
downlink so that each user is able to estimate the channel gain, which
is denoted by hi for user i ∈ {1, 2}. We further assume block rayleigh
fading channels, where hi remains unchanged within a slot interval and
varies randomly and independently slot by slot. Let γi = |hi|2 which
is also known at user i. Owing to the channel reciprocity in TDD, user
i ∈ {1, 2} determines his transmit power P(γi) based on γi as follows:

P(γi) =

{
Pk
γi

, for τk ≤ γi < τk−1

0, for γi ≤ τ2,
(1)

where Pk and τk for k ∈ {1, 2} denote a TRP at the BS and P1 > P2

and a threshold for a user to determine TRP Pk. Additionally, we set
τ0 = ∞.

Let us denote by xi = [pi qi ri] the transmission probability vector
of user i, where pi and qi denote the probability of γi being greater
than τ1, and the probability of γi being in the interval between τ1 and
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τ2, respectively. We also have ri = 1 − pi − qi. For Rayleigh fading
channel, γi follows an exponential distribution. Assuming its mean by
γ, we can find τ1 as

pi = Pr[γi ≥ τ1] = e
− τ1

γ ⇒ τ1 = γ ln
1
pi

. (2)

Furthermore, τ2 can be found as

pi + qi = Pr[γi ≥ τ2] = e
− τ2

γ ⇒ τ2 = γ ln
1

pi + qi
. (3)

In the slot allocated to them, when user 1 chooses his TRP P1 and user
2 chooses P2, the received signal at the BS is

z = h1

√
P1

γ1
s1 + h2

√
P2

γ2
s2 + n, (4)

where sk represents the (coded) signal block of user k with E[sk] = 0
and E[sks

H
k ] = I, and n ∼ CN (0, N0I) is the background noise.

In NOMA, the strong signal in (4), i.e., signal withP1, is first decoded
and then it is subtracted from z. Then, the BS decodes user 2’s signal.
Both of users’ transmissions can be successfully decoded, if P1 and P2

satisfy

P1

P2 +N0
≥ θ and

P2

N0
≥ θ, (5)

where θ represents the signal-to-interference-plus-noise ratio (SINR)
threshold for successful decoding. If the two users choose the same TRP,
it results in unsuccessful SIC and no one can successfully transmit their
signals.

Let us consider the queueing process of two users who share one
RRB. We assume that each user has a queue of unlimited length to store
incoming packets, whereas packets arrive at user i’s queue according
to a Poisson process with mean rate λi (packets/slot) for i ∈ {1, 2} just
after each slot. We denote by Ai the packet arrivals of user i during one
slot and byQi(t) the queue length of user i at slot t. In the course of time,
Qi(t) evolves as Qi(t) = max{0, Qi(t− 1)−Bi +Ai}, where Bi

takes one if user i makes a successful transmission; otherwise, Bi = 0.
In order to incorporate game theory, let us consider a non-cooperative

game for uplink NOMA random access: When each user makes a
successful transmission, he gets reward R, which can be a function of
log(1 + θ) due to (5). On the other hand, the user with TRPPk ∈ {1, 2}
should pay transmission cost Ck for C1 ≥ C2. Then, the utilities that
user 1 gets upon a successful transmission with TRP P1 and P2 are
expressed as u1(1) = R(1 − p2)− C1, and u1(2) = R(1 − q2)− C2,
respectively, whereas he gets u1(3) = 0 when not transmitting. User
2 has also his utility u2(j) for j ∈ {1, 2, 3}, where p2 and q2 are
replaced with p1 and q1. Using the indifference principle, i.e., u1(1) =
u1(2) = u1(3) and u2(1) = u2(2) = u2(3), the mixed-strategy Nash
equilibrium (NE) denoted by p∗i , q∗i , and r∗i for i ∈ {1, 2} can be
obtained as

p∗i = 1 − C1

R
q∗i = 1 − C2

R
, and r∗i =

C1 + C2

R
− 1, (6)

where we have usedp∗i + q∗i + r∗i = 1. Forp∗i , q
∗
i , r

∗
i ∈ [0, 1], we should

have R > C1, C1 + C2 > R, and C1 > C2.
Although it is shown in [13] how other mixed-strategy NEs depend

onR,C1, andC2 and howR,C1, andC2 can be mapped to the thresholds
τ1 and τ2 in (2), to make this work self-contained, we recapitulate how
the mixed-strategy NE in (6) can be determined with τi in (2) and (3)
as follows. Let us assume that Ci is a function of the average power
consumption with TRP Pi, e.g., Ci = cif(P i), where ci is a scaling

factor and P i is the average power consumption with TRP Pi. Using
(2) and (3), we can write C1 and C2 respectively as

C1 = c1P 1 = c1P1E

[
1
γi

∣∣∣γi ≥ τ1

]
=

c1P1

pi

∫ ∞

τ1

1
γi

1
γ
e
− γi

γ dγi

=
c1P1

piγ
E1

(
τ1

γ

)
=

c1P1

piγ
E1

(
ln

1
pi

)
, (7)

where E1(x) =
∫ ∞
x

e−t

t
dt, and

C2 = c2P2E

[
1
γi

∣∣∣τ2 ≤ γi ≤ τ1

]

=
c2P2

qiγ

∫ τ1

τ2

1
x
e−xdx =

c2P2

qiγ

[
E1

(
τ2

γ

)
−E1

(
τ1

γ

)]

=
c2P2

qiγ

[
E1

(
ln

1
pi + qi

)
−E1

(
ln

1
pi

)]
. (8)

For the case of symmetric game, i.e., p1 = p2, and q1 = q2, using (6)
and (7) we determine p∗i as

R(1 − p∗i) =
c1P1

p∗iγ
E1

(
ln

1
p∗i

)
. (9)

Once p∗i is determined from the above, we can also determine q∗i as

R(1 − q∗i ) =
c2P2

q∗iγ

[
E1

(
ln

1
p∗i + q∗i

)
−E1

(
ln

1
p∗i

)]
. (10)

Notice that the left-hand side (LHS) of (9) and (10) is a decreasing
function of p∗i or q∗i in the unit interval, respectively. In [13], it is shown
that the right-hand side (RHS) of (9) and (10) is an increasing function
of p∗i or q∗i such that the uniqueness of p∗i and q∗i in (9) and (10) is
guaranteed.

B. Stability Region and Stochastic Dominant Systems

Let us recall that 2 M users can be accommodated in hybrid uplink
NOMA system with M RBBs. We only focus on a two-user queueing
process since they share one RBB as mentioned earlier. The queueing
process of two-user system is described as a two dimensional vector
process Q(t) = [Q1(t) Q2(t)] for t = 1, 2, . . . . The system is said to
be stable if we have

lim
t→∞

Pr[Q(t) < y] � F (y) and lim
y→∞

F (y) = 1. (11)

Denote by Λx = [λ1, λ2] the stability region conditioned on the trans-
mission probability vector x = [x1 x2], where (11) holds. In this paper,
this is simply called stability region.

Let us now introduce the stochastic dominant systems. To begin with,
we denote by S a two-user system, which is called the original system.
Besides system S , we also consider its stochastic dominant system,
where one or more users are designated (stochastic) dominant user who
can have dummy packets upon their empty queue and transmit either
a dummy or real packet at the head of queue. For a two-user system,
we have three stochastic dominant systems: The first one is the system
with both users designated dominant users, which is denoted by S∗

0 .
The other two systems are the system with only one user designated
dominant user. When the system designates user i a dominant user, it
is denoted by S∗

i for i ∈ {1, 2}.
In system S∗

1 , dominant user 1 can transmit a dummy packet if his
queue is empty. Otherwise, he transmits a real packet. In system S , the
packet transmission of user 1 interferes with that of user 2 if and only
if Q1(t) > 0. However, user 1 in system S∗

1 always interferes with user
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2 by transmitting either real packets if Q1(t) > 0, or dummy packets
if Q1(t) = 0. It can be expected that Q2(t) in system S∗

1 is larger than
that in system S due to more frequent unsuccessful decoding caused
by dummy packet transmissions from user 1. Additionally, Q1(t) in
system S∗

1 is also larger than that in system S since arriving packets to
user 1 always find him busy with a dummy packet transmission when
Q1(t) = 0. For system S∗

2 with user 2 being stochastic dominant user,
the role of each user is interchanged. Accordingly, it is expected that
Q1(t) and Q2(t) in system S∗

2 are always larger than those in system
S .

For system S∗
0 , where both users are dominant users, it can be

envisioned that Q1(t) and Q2(t) in system S∗
0 are always larger than

those in system S . Therefore, we can come to the conclusion that Q1(t)
and Q2(t) in any stochastic dominant system would be at least larger
than those in system S , if the queueing process starts with the same
initial conditions in both systems. It thus follows that if a set of λ1 and
λ2 makes both users’ queue stable in a dominant system, this set makes
the original system stable as well.

Let Λ∗
x,i, i = 0, 1, 2, denote the conditional stability region of dom-

inant system S∗
i ; that is, a set of λ1 and λ2 guaranteeing stability of the

dominant system given (re)transmission probabilities x1 and x2. The
entire conditional stability region of the dominant systems, denoted by
Λ∗

x, is expressed as

Λ∗
x ≡

2⋃
i=0

Λ∗
x,i. (12)

Since the queue length of stochastic dominant systems is equal to, or
larger than the original system with a given set of the mean packet
arrival rates, the relation between the stability regions of two systems
becomes

Λx ⊇ Λ∗
x. (13)

In addition to (13), if we can show later Λx ⊆ Λ∗
x, it can be proved that

Λx ≡ Λ∗
x.

III. ANALYSIS AND RESULTS

1) SystemS∗
0 : In the dominant systemS∗

0 , both users are dominant
users. This means that no user’s queue goes empty due to dummy
packets. Based on Loynes’ theorem [14], which shows that a queueing
system is stable only if the mean packet arrival rate to user i’s queue is
less than his service rate, we can see that user 1’s queue is stable if

λ1 < x1|{1,0} + x1|{1,2} � Ax, (14)

where x1|{1,0} = (p1 + q1)r2 denotes the transmission success proba-
bility of user 1, when he is the only transmitting user in a slot and user 2
doesn’t. In addition, x1|{1,2} = p1q2 + q1p2 is the transmission success
probability of user 1 when user 1 and 2 transmit at the same time in a
slot.

Similarly, user 2’s queue becomes stable if

λ2 < x2|{0,2} + x2|{1,2} � Bx, (15)

where x2|{0,2} = (p2 + q2)r1 and x2|{1,2} = p2q1 + q2p1 denote the
(re)transmission success probability of user 1 when only user 1 trans-
mits in a slot and the (re)transmission success probability of user 2
when both users transmit in a slot, respectively. As a result, system S∗

0

is stable under the following region:

Λ∗
r,0 = {(λ1, λ2)|λ1 < Ax, λ2 < Bx}. (16)

In Fig. 1, Λ∗
r,0 is shown as a rectangle defined by Ar and Br.

Fig. 1. Stability and instability regions.

2) System S∗
2 : In system S∗

2 , user 2 is designated as a dominant
user. In contrast to system S∗

0 , since user 1 in system S∗
2 has only

real packets, his queue can be empty occasionally. To analyze user 1’s
queueing process, denote by πk the (steady-state) probability that user
1’ queue has k packets. Letting âk be the probability that k packets
arrive at user 1 according to Poisson process with mean λ1, we can
write πk for k ≥ 0, 1, . . . as

πk = âkπ0 +
k∑

i=1

(âk−(i−1)μ1 + âk−i(1 − μ1))πi

+ â0μ1πk+1, (17)

where μ1 denotes the probability that a packet of user 1’s queue is
successfully (re)transmitted. We get μ1 as

μ1 = (p1 + q1)r2 + p1q2 + q1p2 = Ax. (18)

Let us define the probability generating functions (PGFs) of user’s
queue length and packet arrivals respectively as

Π(z) =

∞∑
k=0

πkz
k and A1(z) =

∞∑
k=0

âkz
k. (19)

Using (17) and (19), the PGF of user 1’s queue length is given by

Π(z) =
A1(z)(z − μ1 + z(1 − μ1))

z −A1(z)(μ1 + z(1 − μ1))
π0

=
V1(A1(z))(z − 1)
z − V1(A1(z))

π0, (20)

where V1(z) is expressed as

V1(z) = μ1z
∞∑

k=1

((1 − μ1)z)
k−1 =

μ1z

1 − (1 − μ1)z
. (21)

In (25), using limz→1 Π(z) = 1 we have π0 = 1 − λ1
μ1

.
Let β(λ1) denote the service rate for user 2’s queue. It is important

to note that β(λ1) depends on the state of user 1’s queue, i.e., empty or
not. We can write it as

β(λ1) = (x2|{0,2} + x2|{1,2})(1 − π0) + (p2 + q2)π0

= (p2(1 − p1) + q2(1 − q1))(1 − π0) + (p2 + q2)π0. (22)

By applying Loynes’ theorem to user 2, if the arrival rate of user 2 is less
than β(λ1), i.e., λ2 < β(λ1), we can see that user 2’s queue is stable. In
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addition, since user 1 is a dominant user, his queue is stable if λ1 < Ax.
Accordingly, the conditional stability region of S∗

2 is expressed as

Λ∗
x,2 = {(λ1, λ2)|λ1 < Ax, λ2 < β(λ1)}. (23)

In Fig. 1, Λ∗
x,2 is depicted as a trapezoidal region whose circumference

is depicted by a blue solid-line.
3) System S∗

1 : Finally, let us investigate the stability region of
dominant system S∗

1 , where user 1 is a dominant user. For the non-
dominant user 2, let φk denote the (steady-state) probability that k
packets are in user 2’s queue, whereas ǎk denotes the probability that
k packets arrive at user 2 according to Poisson process with mean λ2.
As in (17), φk becomes

φk = ǎkφ0 +
k∑

i=1

(ǎk−(i−1)μ2 + ǎk−i(1 − μ2))φi

+ ǎ0μ2φk+1, (24)

where μ2 = (p2 + q2)r1 + p2q1 + q2p1 = Bx.
Furthermore, we define the PGF of the queue length of user 2 and

the number of arriving packets to this user, respectively, as

Φ(z) =
∞∑

k=0

φkz
k and A2(z) =

∞∑
k=0

ǎkz
k. (25)

We can find Φ(z) as

Φ(z) =
A2(z)(z − μ2 + z(1 − μ2))

z −A2(z)(μ2 + z(1 − μ2))
φ0

=
V2(A2(z))(z − 1)
z − V2(A2(z))

φ0, (26)

where V2(z) is expressed as

V2(z) = μ2z
∞∑

k=1

((1 − μ2)z)
k−1 =

μ2z

1 − (1 − μ2)z
. (27)

From limz→1 Φ(z) = 1 we get φ0 = 1 − λ2
μ2

.
Let α(λ2) denote the service rate for user 1, which can be expressed

as

α(λ2) = (x1|{1,0} + x1|{1,2})(1 − φ0) + (p1 + q1)φ0. (28)

By Loynes’ theorem to user 1, if the arrival rate of user 1 is less than
α(λ2), i.e., λ1 < α(λ2), we can see that user 2’s queue is stable. In
addition, since user 1 is a dominant user, his queue is stable if λ2 < Bx.
Accordingly, the stability region of S∗

1 is expressed as

Λ∗
x,1 = {(λ1, λ2)|λ1 < α(λ2), λ2 < Bx}. (29)

Fig. 1 illustrates Λ∗
x,1 whose circumference is depicted by a red dotline.

Notice that Λ∗
x,0 ⊂ Λ∗

x,1, Λ∗
x,0 ⊂ Λ∗

x,2, and Λ∗
x,0 ⊂ (Λ∗

x,1 ∪ Λ∗
x,2). In

addition, it can be seen that α(λ2) → p1 + q1 as λ2 → 0, and β(λ1) →
p2 + q2 as λ1 → 0.

Now we will show that the stability region of the stochastic dominant
systems is equal to that of the original system by using the instability
region of two systems. To begin with, let Γ∗

x,i for i ∈ {0, 1, 2} be the
instability region of dominant system S∗

i . It can be expected that the
entire instability region of the dominant systems is the union of each
instability region:

2⋃
i=0

Γ∗
x,i =

2⋃
i=0

Λ∗
x,i = Λ∗

x. (30)

To find Γ∗
x,0, let us consider Λ∗

x,0 = {(λ1, λ2)|λ1 < Ax, λ2 < Bx}. If
arriving (real) packets start filling up each user’s queue, dummy packet
transmissions could gradually disappear. This implies that the queueing
process of dominant system S∗

0 becomes indistinguishable from that
of the original system S . This takes place if λ1 ≥ Ax and λ2 ≥ Bx.
This makes both queues in system S∗

0 unstable, which also makes the
original system S unstable. Therefore, the instability region for system
S∗

0 is expressed as

Γ∗
x,0 = {(λ1, λ2)|λ1 ≥ Ax, λ2 ≥ Bx}, (31)

which is shown in Fig. 1.
Secondly, let us find Γ∗

x,2. Note that non-dominant user 1’s queue
in system S∗

2 is stable if λ1 < Ax. For dominant user 2, his utilization
is λ2/β(λ1). As λ2/β(λ1) → 1, we can see that dummy packet trans-
missions hardly occur such that dominant user 2’s queue of system S∗

2

behaves asymptotically identical to that of system S . Then, system S∗
2

is said to be indistinguishable from system S . Since user 2’s queue
in system S∗

2 is unstable for λ2 ≥ β(λ1), the original system S gets
unstable as well. Thus, we get

Γ∗
x,2 = {(λ1, λ2)|λ1 < Ax, λ2 ≥ β(λ1)}. (32)

By the same token, we can get Γ∗
x,1 as

Γ∗
x,1 = {(λ1, λ2)|λ1 ≥ α(λ2), λ2 < Bx}. (33)

In Fig. 1, Γ∗
x,1 and Γ∗

x,2 are illustrated. Since the original system goes
also unstable for a set of λ1 and λ2 belonging to the instability region
for its dominant system, we have

Λx ⊇ Λ∗
x. (34)

Theorem 1: The stability region of hybrid uplink NOMA system is
equal to that of its stochastic dominant system:

Λx ≡ Λ∗
x. (35)

Proof: We can rewrite (34) as Λx ⊇ Λ∗
x ⇒ Λx ⊆ Λ∗

x. Using (13),
i.e., Λx ⊇ Λ∗

x, we can complete the proof. �
In Fig. 1, the circumference of Λx contains the blue-solid line for

0 ≤ λ1 ≤ Ax and the red dotline for Ax ≤ λ1 ≤ Amax.
Theorem 2: The boundary curve f(λ1), under which the stability

region Λx lies, is characterized by

f(λ1) =

{
β(λ1), for 0 ≤ λ1 ≤ Ax

α−1(λ1), for Ax ≤ λ1 ≤ Amax,
(36)

where we leave out the expression of α−1(λ1) for brevity.
Proof: Referring to Λ∗

x,1

⋃
Λ∗

x,2 ⊃ Λ∗
x,0 in Fig. 1, we have

Λx ≡ Λ∗
x,1

⋃
Λ∗

x,2. (37)

For 0 ≤ λ1 ≤ Ax, user 2’s queue is stable if λ2 < β(λ1). Thus, f(λ1)
follows β(λ1) in this range. On the other hand, the maximally allowable
arrival rate at user 1’s queue is found when λ2 = 0, i.e., α(0) = Amax.
For 0 ≤ λ2 ≤ Bx, the stability region lies in λ1 < α(λ2). It can be
rewritten with respect to λ1, i.e., α−1(λ1) < λ2.

Proposition 1: The stability region Λx is convex if

Ax/Amax + Bx/Bmax ≥ 1, (38)

where Amax = p1 + q1 and Bmax = p2 + q2.
Proof: As shown in Fig. 2 , we can draw a straight line −Bmax

Amax
λ1 +

Bmax = λ2. If λ2 ≥ Bx for λ1 = Ax, the stability region becomes
convex. �
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Fig. 2. Convexity of stability region.

Let us apply the mixed-strategy NE to the stability region.
For the symmetric game, i.e., p1 = p2 = p, q1 = q2 = q, and r1 =
r2 = r, let us see whether or not μi for i ∈ {1, 2} can be
nonnegative for the mixed-strategy NE in (6): We can write
(18) as μ1 = (p+ q)r + 2pq = (2 − C1+C2

R
)(1 − C1+C2

R
)− 2(1 −

C1
R
)(1 − C1

R
) = (C1 + C2)R+ C2

1 + C2
2 , where we have used (6).

Using C1 = C2 + ε for ε > 0 and plugging it into μ1, we can rewrite
μ1 > 0 in terms of R, C1, and C2 as

R >
C2

1 + C2
2

C1 + C2
= C2 + 0.5ε+

0.5ε2

2C2 + ε
. (39)

If C2 � ε and ε < 1, the above can be approximated as R > C2 + ε ≈
C1. This shows that ifR > C1,C1 = C2 + ε andC2 � ε > 0, we have
μ1 > 0.

Proposition 2: In the symmetric game, the stability region becomes
convex at the mixed-strategy NE if we have

C2 + ε ≤ R ≤ 1.5C2 + 0.75ε+
√

ζ, (40)

where ζ = 4.5C1C2 − 1.75(C2
1 + C2

2 ) and C2 > (
√

2 − 0.5)ε ≈
0.914ε.

Proof: In the symmetric game, recall that we should haveC1 < R <
C1 + C2. Using C1 = C2 + ε, we have C2 + ε < R < 2C2 + ε. This
shows the strict inequality of the LHS in (40). In the symmetric game,
the convexity condition of stability region in (38) becomes

r + 2pq/(p+ q) ≥ 0.5. (41)

With (6) and (41), we write (41) in terms of R, C1, and C2 as R2 −
1.5(C1 + C2)R+ C2

1 + C2
2 ≤ 0. From this, if we have

1.5(C1 + C2)−
√
ζ

2
≤ R ≤ 1.5(C1 + C2) +

√
ζ

2
, (42)

then the stability region is convex. Since the LHS of (42) is less thanC1,
we can write (42) as (40). Since the radicand ζ must be nonnegative,
plugging C1 = C2 + ε into ζ, we have ζ = C2

2 + εC2 − 1.75ε2 ≥ 0.
This holds if C2 ≥ (

√
2 − 0.5)ε. This is a necessary condition for ζ to

be nonnegative. �
It is notable that the stability region is always convex at the mixed-

strategy NE in (6), if the RHS of (42) is larger than C1 + C2; that is,
C1 + C2 = 2C2 + ε < 1.5C2 + 0.75ε+

√
ζ. We then have (0.5C2 +

0.25ε)2 < ζ ⇒ 3C2
2 + 3εC2 − 29

4 ε
2 > 0. If C2 ≥ 1.13 299ε, then the

stability region is convex at the mixed-strategy NE.
Let us discuss numerical results with γ = 1 in (7) and (8): Fig. 3

depicts the stability regions with various rewards and costs. Note

Fig. 3. Stability regions (The small rectangle indicates the stability region of
system S∗

0 for R = 0.95, C1 = 0.9 and C2 = 0.6.).

Fig. 4. Queue length vs. mean arrival rates.

that when R, C1 and C2 are given, we can determine p∗, q∗, and r∗

with (6) and find c1 = (R(1 − p∗i)p
∗
iγ)/(P1E1(ln

1
p∗
i
)) with P1 and

similarly c2.
First, let us examine the convexity of the stability region for the

parameters given. If C2 = 0.6, ε = 0.3, and C1 = C2 + ε, we have
1.5C2 + 0.75ε+

√
ζ = 1.7435. Thus, (40) holds for R = 0.95 and

1.25, which guarantees the convexity of the stability region. The stabil-
ity region is also convex for R = 1.4. It is observed that as R increases,
which encourages the users to transmit, the stability region expands.
For R = 1.4 (high reward), the stability region gets close to that of
the ideal TDMA (or genie-aided), in which an omniscient centralized
scheduler schedules a slot to two users perfectly depending on the state
of two users’ queue. Note that its stability region is λ1 + λ2 ≤ 1. When
C1 and C2 are respectively reduced to 0.63 and 0.33 from 0.9 and 0.6,
the users are more incentivized to transmit. In this case, the stability
region is non-convex since (40) does not hold. However, the stability
region seems close to that of the ideal TDMA system as well. We can
come to the conclusion that while hybrid uplink NOMA is a distributed
scheduler based on random access, it achieves the stability region close
to the ideal TDMA system if either a high reward R and/or low cost
Ci’s is considered.

In Fig. 4, the stability region withR = 1.25,C1 = 0.9 andC2 = 0.6
is verified. As shown, at λ2 = 0.4, the maximum rate for user 1 cannot
exceed λ1 = 0.49, which is the boundary of the stability region. As λ1

gets close to 0.49 in Fig. 4, the user 1’s queue increases explosively.
Let us compare the hybrid uplink NOMA with OMA in terms of

throughput. Let �N and �O denote the throughput of hybrid uplink
NOMA and OMA system, respectively. In the symmetric game, �N
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can be expressed as

�N = (1 − r) (Pr[Q1 > 0, Q2 = 0] + Pr[Q1 = 0, Q2 > 0])

+ 2(2pq + (p+ q)r) Pr[Q1 > 0, Q2 > 0]. (43)

For OMA system, where a user exclusively uses one RRB, let Q
and λ denote the queue length of a user who use one RRB and the
mean rate of packet arrivals to the user. Then, �O is expressed as
�O = (1 − r) Pr[Q > 0]. In order for hybrid uplink NOMA to benefit
from statistical multiplexing by random access compared to OMA
system, under the same traffic load λ1 + λ2 = λ, it is expected that

�N > �O or �N − �O > 0. (44)

To see that (44) always holds, the joint probabilities Pr[Q1 > 0, Q2 =
0], Pr[Q1 = 0, Q2 > 0], and Pr[Q1 > 0, Q2 > 0] should be ob-
tained. Since it is difficult to get these probabilities, first let us
assume two cases, i.e., either Pr[Q1 > 0, Q2 = 0] = Pr[Q > 0],
or Pr[Q1 = 0, Q2 > 0] = Pr[Q > 0]. Then, it can be seen that
Pr[Q1 > 0, Q2 = 0] (or Pr[Q1 = 0, Q2 > 0]) and Pr[Q > 0] are
cancelled out on the LHS and RHS in (44) so that (44) holds for
two cases. Second, let us assume Pr[Q1 > 0, Q2 = 0] + Pr[Q1 =
0, Q2 > 0] ≥ Pr[Q > 0]. We then have �N− �O = 2(2pq + (p+
q)r) Pr[Q1 > 0, Q2 > 0] > 0 > (1 − r) (Pr[Q > 0]− Pr[Q1 > 0,
Q2 = 0]+ Pr[Q1 = 0, Q2 > 0]) so that (44) holds as well. Finally, let
us consider Pr[Q1 > 0, Q2 = 0]+ Pr[Q1 = 0, Q2 > 0] <Pr[Q > 0].
We write (44) as �N − �O = 2(2pq + (p+ q)r) Pr[Q1 > 0, Q2 >
0] > (1 − r)(Pr[Q > 0]− (Pr[Q1 > 0, Q2 = 0]+ Pr[Q1 = 0, Q2 >
0])) > 0. For λ1 + λ2 = λ, it is highly likely to see Pr[Q > 0] ≤
Pr[Q1 > 0, Q2 > 0]+ Pr[Q1 > 0, Q2 = 0] + Pr[Q1 = 0, Q2 > 0].
When it would hold, (44) holds too.

IV. CONCLUSION

This paper has examined hybrid uplink NOMA systems, where two
users share one RRB based on NOMA random access such that 2 M
users can be accommodated with M orthogonal RRBs. By incorpo-
rating (non-cooperative) game, we investigated the stability region of
two-user hybrid uplink NOMA system. At the mixed-strategy NE,
where two users are statistically multiplexed with competition, we

showed the convexity of the stability region depending on the rewards
and costs. It has been demonstrated that the stability region of hybrid
uplink NOMA system can be almost identical to that of the ideal TDMA
system under some conditions.
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